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Symbols

A nuclear mass number�
A

B

�
binomial coe�cient

B(e) average slope parameter of nucleon-nucleon scattering amplitude, fm2

b projectile impact parameter vector, fm

E energy, GeV or MeV

e two-nucleon kinetic energy in their center-of-mass frame, GeV

I(b) de�ned by equation (3)

Ip(b) de�ned by equation (7)

N total number of projectile nucleus neutrons

n number of abraded neutrons

Pesc probability that an abraded nucleon escapes without further
interaction

T (b) probability for not removing single nucleon by abrasion

y two-nucleon relative position vector, fm

Z total number of projectile-nucleus protons

z number of abraded protons

z0 position vector of projectile along beam direction, fm

�T collection of constituent relative coordinates for target, fm

� nuclear single-particle density, fm�3

� cross section, fm2 or mb

� mean-free path, fm

Subscripts:

abr abraded

exc prefragment excitation

FSI frictional spectator interaction

NN nucleon-nucleon

nuc nuclear

P projectile

PF prefragment

T target

iii



Abstract

Quantum-mechanical optical model methods for calculating cross
sections for the fragmentation of galactic cosmic ray nuclei by hy-
drogen targets are presented. The fragmentation cross sections are
calculated with an abrasion-ablation collision formalism. Elemental
and isotopic cross sections are estimated and compared with mea-
sured values for neon, sulfur, and calcium ions at incident energies
between 400A MeV and 910A MeV. Good agreement between theory
and experiment is obtained.

Introduction

The fragmentation of galactic cosmic ray (GCR) nuclei in hydrogen targets is an important

physical process in several areas of space radiation physics research. In astrophysics, it is crucial

to understanding cosmic ray propagation and source abundances (ref. 1) because interstellar

hydrogen is the major type of material encountered by GCR nuclei traveling through the

universe. In studies of spacecraft shielding for interplanetary missions (ref. 2), hydrogen has

been found to be the most e�ective GCR shield material per unit mass. In addition, hydrogen is

a major constituent of human tissue. Therefore, accurate cross sections are needed for properly

estimating GCR radiation exposures to critical body organs (ref. 3).

Previously, cross-section predictions used in these studies have been obtained from semi-

empirical formulations (refs. 4 to 7). The most commonly used formulation is the one by

Silberberg and collaborators (ref. 5). The most accurate formulation appears to be a recent

one by Webber and collaborators (ref. 6). None are based upon fundamental physics. All have

numerous parameters that are adjusted as necessary to �t existing measurements.

The production of fragments in peripheral, relativistic heavy ion collisions has been the

subject of numerous theoretical and experimental investigations for about 2 decades. Many of

these investigations were summarized in reviews published during this period (refs. 7 to 10).

Early attempts to explain fragmentation used statistical models (refs. 11 and 12). These were

followed by a two-step abrasion-ablation model (ref. 13), which was based upon earlier work by

Serber in high-energy, inelastic nuclear collisions (ref. 14).

The main shortcoming associated with the use of early abrasion-ablation models for nuclear

fragmentation on hydrogen targets is the unrealistically large proton radius needed for the

prefragment excitation energy estimate. This radius is dictated by the reliance on excess surface

energy of the misshapen liquid drop as the only source of prefragment excitation.

This shortcoming in the model can be recti�ed by considering an abrasion-ablation{

frictional-spectator-interaction (FSI) model where the abrasion stage is described by a quantum-

mechanical optical model formalism and the ablation stage is modeled with cascade-evaporation

techniques. There is no excess surface area energy. Instead, the prefragment excitation energy

is assumed to be provided by FSI contributions from the abraded nucleons. This fragmentation

model is proposed in this report.

Abrasion-Ablation Models

In an abrasion-ablation model, the projectile nuclei, moving at relativistic speeds, collide

with stationary target nuclei. In the abrasion step (particle knockout), those portions of the

nuclear volumes that overlap are sheared away by the collision. The remaining projectile piece,

called a prefragment, continues its trajectory with essentially its precollision velocity. Because of

the dynamics of the abrasion process, the prefragment is highly excited and subsequently decays



by the emission of gamma radiation or nuclear particles. This step is the ablation stage. The
resultant isotope is the nuclear fragment whose cross section is measured. The abrasion step is
often formulated with methods obtained from quantum scattering theory (refs. 15 and 16) or
with classical geometry arguments (refs. 13 and 17). The ablation step is typically modeled
with compound nucleus decay (refs. 13 and 18) or combined cascade-evaporation (ref. 19)
methods. Other approaches based upon nuclear Weisz�acker-Williams methods (ref. 20) and
nucleon-nucleon cascade plus statistical decay models (ref. 21) have also been proposed.

Although abrasion-ablation fragmentation models have been quite successful in predicting
fragment production cross sections, their predictive accuracy is hampered by the need to estimate
the (unknown) prefragment excitation energy. Various models have been developed for this
purpose (refs. 13, 15, 18, and 22). The most widely used excitation energy formalism (ref. 13)
treats the fragmenting nucleus as a misshapen liquid drop whose excitation is given by the excess
surface energy resulting from the abrasion step. Although this method worked fairly well for
nucleus-nucleus fragmentations, its use in nucleus-hydrogen collisions, among other di�culties,
required an arti�cially large proton radius (ref. 13).

When it was recognized that additional excitation energy was required to improve the
agreement between theory and experiment for nucleus-nucleus collisions, the concept of FSI
energy was introduced (ref. 22). This concept is based upon the assumption that some abraded
nucleons are scattered into rather than away from the prefragment, thereby depositing additional
excitation energy. This concept signi�cantly improved the agreement between theory and
experiment.

Over the past 10 years, we have formulated an optical model abrasion-ablation{FSI descrip-
tion of fragmentation in relativistic nucleus-nucleus collisions that is used to predict fragment
production cross sections (refs. 16 and 23 to 42) and momentum distributions of the emitted
fragments (refs. 43 through 47). In the present work, this fragmentation model is modi�ed to
make it applicable to nucleus-nucleon collisions. As previously discussed, the main shortcoming
associated with the use of early abrasion-ablation models for nuclear fragmentation on hydrogen
targets is the unrealistically large proton radius needed for the prefragment excitation energy
estimate. This radius is dictated by the reliance on excess surface energy of the misshapen liquid
drop as the only source of prefragment excitation.

This shortcoming in the model can be recti�ed by considering the physics of the fragmentation
process. For instance, a picture of overlapping nuclear volumes being sheared o� may be
reasonable for heavier nuclei colliding with each other, but it is not reasonable for a single
nucleon striking another nucleus. Instead, a more reasonable physical picture involves individual
collisions between the projectile constituents and the target proton. Some struck projectile
nucleons exit the fragmenting nucleus without further interaction, and some interact one or more
times with the remaining constituents before departing. The remaining nucleus (prefragment), in
an excited state because of the energy deposited during the collision, then deexcites by particle-
or gamma-emission processes. This picture is easily described by an abrasion-ablation{FSI model
where the abrasion stage is described by a quantum-mechanical optical model formalism and
the ablation stage is modeled with cascade-evaporation techniques. There is no excess surface
area energy. Instead, the prefragment excitation energy is assumed to be provided by FSI
contributions from the abraded nucleons. This fragmentation model is proposed in this report.

Theory

In the nucleus-nucleus optical potential formalism (ref. 29), the cross section for producing,
by abrasion, a prefragment of charge ZPF and mass APF is given by

�abr (ZPF; APF) =

�
N

n

��
Z

z

�Z
d2b[1� T (b)]n+z[T (b)]APF (1)
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where

T (b) = exp[�AT �NN(e)I(b)] (2)

and

I(b) = [2�B(e)]�3=2
Z

dz0

Z
d3�T�T(�T)

Z
d3y�P(b+ z0+ y+ �T) exp[�y

2=2B(e)] (3)

The nuclear number densities �i(i = P or T ) are obtained from the appropriate charge densities

by an unfolding procedure (ref. 16). The constituent-averaged nucleon-nucleon cross sections

�NN(e) are given in reference 48. Values for the di�ractive nucleon-nucleon scattering slope
parameter B(e) are obtained from the parameterization in reference 49.

In equation (1) a hypergeometric charge dispersion model is chosen to describe the distribu-

tion of abraded nucleons. The model assumes that z out of Z projectile protons and n out of N
projectile neutrons are abraded where

N + Z = AP (4)

APF = AP � n � z (5)

and

�
A

B

�
denotes the usual binomial coe�cient expression from probability theory.

For nuclear collisions with hydrogen (proton) targets, the appropriate target number density

to use is given by the Dirac delta function

�T(�T) = �(�T) (6)

Inserting equation (6) into equation (3) yields

Ip(b) = [2�B(e)]�3=2
Z

dz0

Z
d3y�P(b + z0+ y) exp[�y2=2B(e)] (7)

With AT = 1, equation (2) becomes

T (b) = exp[��NN(e)Ip(b)] (8)

The nucleus-hydrogen abrasion cross sections are calculated with equations (1), (7), and (8).

Prefragment excitation energies are estimated from the FSI energy contribution

Eexc = EFSI (9)

which is calculated with the model of Rasmussen (ref. 22). With this model, the rate of energy

transfer to the prefragment is

dE

dx
=

E

4�
(10)

where

� =
1

��NN

�
�NN �

300

E

�
(11)
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yields
dE

dx
= �12:75 MeV=fm (12)

If a spherical nucleus of uniform density is assumed, the average energy deposited per
interaction is

hEFSIi � 10:2A1=3 MeV (13)

Therefore, the abrasion cross section for a prefragment species (ZPF; APF) which has
undergone q frictional spectator interactions is

�abr(ZPF; APF; q) =

�
n + z

q

�
(1� Pesc)

q(Pesc)
n+z�q�abr(ZPF; APF) (14)

where 0 � q � n + z, and Pesc is the probability that an abraded nucleon escapes without
undergoing any frictional spectator interactions (ref. 34). In this report, the choice of Pesc = 0:5
follows from the original work of Rasmussen (ref. 22). Such a value assumes that the nuclear
surface has no curvature, and this value should be reasonably correct for heavy nuclei. For
lighter nuclei, the surface can exhibit signi�cant curvature such that the value of Pesc can be
larger than 0.5. Methods for estimating Pesc when nuclear surface curvature is considered have
been formulated by Vary and collaborators (ref. 50).

Depending upon the magnitude of its excitation energy, the prefragment will decay by
emitting nucleons, composites, and gamma rays. The probability �ij(q) that a prefragment
species j, which has undergone q frictional spectator interactions, deexcites to produce a
particular �nal fragment of type i is obtained with the EVA-3 Monte Carlo cascade-evaporation
computer code (ref. 19). Therefore, the �nal hadronic cross section for production of the type i
isotope is obtained from

�nuc(Zi; Ai) =
X
j

n+zX
q=0

�ij(q)�abr(Zj; Aj; q) (15)

where the summation over j accounts for contributions from di�erent prefragment isotopes j,
and the summation over q accounts for the e�ects of di�erent FSI excitation energies. Finally,
the elemental production cross sections are obtained by summing all isotopes of a given element
according to

�nuc(Zi) =
X
Ai

�nuc(Zi; Ai) (16)

Results

Figures 1 and 2 show isotope production cross sections obtained with equation (15) for 32S
beams at 400A MeV fragmenting in hydrogen targets. The �gures also show recently reported
experimental results (ref. 51). For clarity, the experimental error bars are not plotted. The 32S
nuclear density used in the calculation was a Woods-Saxon form with skin thickness and half-
density radius obtained from reference 48. The agreement between theory and experiment is
quite good, especially considering that no arbitrary parameters are in the theory. Quantitatively,
a distribution analysis of the cross-section di�erences between theory and experiment �nds that
32 percent agree within the experimental uncertainties, 50 percent agree within a 25-percent
di�erence, nearly 75 percent agree within a 50-percent di�erence, and over 82 percent agree
within a factor of 2.

Elemental production cross-section predictions obtained from equation (16) are displayed
in �gures 3 to 8 for 20Ne beams at 400A MeV and 910A MeV and for 32S and 40Ca beams at
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400A MeV and 800A MeV incident kinetic energies colliding with hydrogen targets. The nuclear

densities used in the calculations were Woods-Saxon forms with skin thicknesses and half-density

radii again obtained from reference 48. These experimental data were taken from reference 51.

Overall, the agreement between theory and experiment is good, although the theory tends to

predict values that are slightly larger than the reported measurements.
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Figure 1. Isotope production cross sections for 400A MeV 32S fragmentation in hydrogen targets for isotopes of P,

Al, Na, and F fragments.
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Figure 2. Isotope production cross sections for 400AMeV 32S fragmentation in hydrogen targets for isotopes of Si,

Mg, Ne, and O fragments.
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Figure 3. Element production cross sections for 400AMeV 20Ne fragmentation in hydrogen targets.
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Figure 4. Element production cross sections for 910AMeV20Ne fragmentation in hydrogen targets.
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Figure 5. Element production cross sections for 400AMeV 32S fragmentation in hydrogen targets.
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Figure 6. Element production cross sections for 800AMeV 32S fragmentation in hydrogen targets.
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Figure 7. Element production cross sections for 400AMeV 40Ca fragmentation in hydrogen targets.
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Figure 8. Element production cross sections for 800AMeV40Ca fragmentation in hydrogen targets.

Concluding Remarks

A simple, yet accurate, optical potential abrasion-ablation fragmentation model has been

developed for use in studies of galactic cosmic ray breakup on hydrogen targets. The model

has no arbitrarily adjusted parameters. Model predictions have good agreement with recent

laboratory measurements of elemental and isotopic production cross sections for the fragmenting

of neon, sulfur, and calcium beams on hydrogen targets.

NASALangleyResearch Center

Hampton, VA 23681-0001

October 28, 1993
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